Bayesian Source Localization with the Multivariate Laplace Prior

نویسندگان

  • Marcel van Gerven
  • Botond Cseke
  • Robert Oostenveld
  • Tom Heskes
چکیده

We introduce a novel multivariate Laplace (MVL) distribution as a sparsity promoting prior for Bayesian source localization that allows the specification of constraints between and within sources. We represent the MVL distribution as a scale mixture that induces a coupling between source variances instead of their means. Approximation of the posterior marginals using expectation propagation is shown to be very efficient due to properties of the scale mixture representation. The computational bottleneck amounts to computing the diagonal elements of a sparse matrix inverse. Our approach is illustrated using a mismatch negativity paradigm for which MEG data and a structural MRI have been acquired. We show that spatial coupling leads to sources which are active over larger cortical areas as compared with an uncoupled prior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm

Following a Bayesian statistical inference paradigm, we provide an alternative methodology for analyzing a multivariate logistic regression. We use a multivariate normal prior in the Bayesian analysis. We present a unique Bayes estimator associated with a prior which is admissible. The Bayes estimators of the coefficients of the model are obtained via MCMC methods. The proposed procedure...

متن کامل

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

A unified Bayesian framework for MEG/EEG source imaging

The ill-posed nature of the MEG (or related EEG) source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian approaches are useful in this capacity because they allow these assumptions to be explicitly quantified using postulated prior distributions. However, the means by which these priors are ...

متن کامل

Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior

Bayesian logistic regression with a multivariate Laplace prior is introduced as a multivariate approach to the analysis of neuroimaging data. It is shown that, by rewriting the multivariate Laplace distribution as a scale mixture, we can incorporate spatio-temporal constraints which lead to smooth importance maps that facilitate subsequent interpretation. The posterior of interest is computed u...

متن کامل

Bayesian variable selection in additive partial linear models

Many studies in recent time include a large number of predictor variables, but typically only a few of the predictors have significant roles. Variable selection techniques have been developed using both non-Bayesian and Bayesian approaches. Additive partial linear models (APLM) provide a flexible yet manageable extension of linear models, where some variables can have non-linear effects. We dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009